LCMS Troubleshooting Tips | Causes | Solutions | |-------------------------------|---| | MS | If all peaks have changed in sensitivity check maintenance requirements; and clean the ion source and if required ion optics. Ensure appropriate and accurate acquisition parameters are being used. Check for adducts such as Na+, NH4+, K+. Consider different glassware, make up new mobile phases. Increase additive or buffer concentration if required Ensure probe is at correct distance from orifice. Check for matrix effects such as ion suppression. Consider different LC methods and sample preparation procedures. Replace capillary and desolvation line. Perform and check MS tune. | | Sample | Check for sample degradation. Prepare a fresh sample. Check sample preparation and standard/QC concentrations. Include an internal standard with known concentration during sample preparation. Incorrect sample diluent used. Check injection volume. | | Loss of column
performance | Check the peak widths and resolution. Test the performance of the column using your standard tes for loss in performance. Replace analytical column. | | LC leaks | - Check for loose fittings post injector on the system. | | Mobile phase | Check concentration of additives. If suppressing mobile phase components were used in previous method, clean MS source and flush out LC system. | #### **Low Pressure** | Causes | Solutions | |-----------------------------|--| | Partial leak in system | Check all connections and retighten any which have leaks. | | Flow rate | Check the method has the correct flow rate. Test the flow rate accuracy using a calibrated flow rate meter or collect a specific volume and monitor the time required. Replace worn out or damaged pump seals. | | Method | Check if method is using correct temperature
and correct solvents.If a column section valve is used, check
correct column selected. | | Incorrect column | - Use correct column with correct dimensions and particle geometry. | | Column temperature too high | Set adequate column temperature and check
no column damage if exceeded column
temperature limit. | | Airlock in LC tubing | Remove tubing from degasser and ensure
flow under gravity. Reconnect and purge
pumps in isopropanol. | | Stuck check valve | Purge LC system using isopropanol and ensure check valves are working correctly. Sonicate the check valves in isopropanol. | # **Poor Mass Accuracy** (HRAM Instruments) **Sensor malfunction** - Repair or replace pressure sensor. | Causes | Solutions | |-----------------------------------|---| | MS out of tune | - Perform and check system tune. | | TOF Calibration | - Perform TOF calibration. | | Calibration performed incorrectly | Ensure sample analytes are within calibration range and
adjust if required. | | Detector saturation | - Dilute sample or adjust injection volume. | #### Changes in MS Resolution | Causes | Solutions | |----------------|---------------------------| | MS out of tune | - Perform and check tune. | #### **Undesired Fragmentation** | Causes | Solutions | | |------------------------------------|---|--| | lon source
setting
too harsh | Check source temperatures are appropriate for analyte.Check ionisation voltage is appropriate for analyte. | | | Collision energy
too high / low | Check and optimise collision cell gas pressure and
collision energy. | | | lon optics | - Ensure correct voltage is applied to desolvation line and QArray. | | # **Basic Steps** Follow these steps to isolate where the problems is. Check the obvious explanations first and change only one thing at a time! • LC pump pressures Argon gas cylinder (level and pressure) (pressure readings) • Roughing pump MS vacuum Gas generator • Ion source maintenance (oil level & gas ballast) #### Check the Basics: - Power & electrical connections - Communication cables - Sample preparation - Analytical conditions Mobile phase preparation - Needle rinse & seal washes - Solvent flowing / # no air bubbles - Identify the Cause: • Clearly define the problem - Review sample and maintenance logs to identify trends in the data or possible problem indicators - Use a logical sequence of events to isolate possible causes # **Document Everything:** - Document typical values such as analyte retention times and normal initial LC operating pressures. Use as a benchmark to indicate deterioration in system performance - Document all troubleshooting steps and results. This may help you identify and solve the next problem faster - Always inject a known sample and compare to previous data as a reference to ensure restored performance Still having problems with your instrument? Let us know at lc-support@shimadzu.nl # No Peaks | Causes | Solution | |---|--| | MS setting issue | Check the method uses appropriate MS settings for the compounds of interest. Ensure probe is at correct distance from orifice. Check protrusion of capillary from probe. Check spray from capillary. Check ion source temperatures / gas flows are as expected and stable. Check collision gas pressure is correct and stable. Ensure analyte elutes within event window set in method. Check for adducts such as Na+, NH₄+, K+. Consider different glassware, make up new mobile phases. Check for matrix effects such as ion suppression. Consider different LC methods and sample preparation procedures. Concentration injected is below limit of detection. Perform and check MS tune. | | LC | Check LC outlet tubing is connected to ion source. No mobile phase flow, possibly purge valve left open. Purge the system including injector to remove possible air bubbles in pump. Purge LC system using isopropanol to ensure check valves are working correctly. Check for crimped or damaged tubing. | | Compounds
not retained
or retained
longer than run
time in method
conditions | Check mobile phase composition is correct. Check correct analytical column type is being used. Increase run time. Increase solvent strength. Check correct flow rate is being achieved. | | Sample issues | Prepare fresh samples. Review injection volume in sequence / method. Ensure the sample is in the correct position in the autosampler. Check for sample adsorption issue. Check for air pockets trapped in bottom of vial or well. | | Sample flowing
to waste | - Check divert valve settings if applicable. | # **Changing Retention Times** | Causes | Solutions | |---|---| | Flow rate | - Check the method uses the correct flow rate. | | Insufficient
equilibration | The column should be equilibrated using at least 10 column volumes (check with manufacturer's manual). Allow more time or column volumes to equilibrate column between injections. | | Poor
temperature
control | - Ensure column oven temperature is accurate. | | Change
in column
dimension | - Ensure the correct column including dimensions are being used. | | Change
in column
stationary
phase
environment | Do not use a column which has ion pairing reagent
for other mobile phases due to memory effects. Stationary phase 'de-wetted'. | | Improper
mobile phase | Ensure the mobile phase is accurately prepared and the correct lines are being chosen on the method. Ensure the pump is accurately dispensing mobile phase. | | Instrument
leaks | - Check for loose fittings throughout the system. | | Air bubble in pump | - Purge pump via purge valve. | | Sample diluent | - Inappropriate sample diluent for column. | | Needle rinse | - Needle rinse solvent reaching the column. | | Faulty or 'sticky'
check valve | - Purge LC system using isopropanol to ensure check valves are working correctly. | #### **Carry Over** | Causes | Solutions | |-----------------------------|--| | Inappropriate wash settings | - Check wash solution and wash settings. | | Sample
concentration | - Use lower concentrated sample or inject less. | | Column
contamination | - Flush column; replace guard columns and analytical column if applicable. | | Injector issue | Changes in dispensing volume of injector, use a system suitability sample to determine volume changes. Check batch / method details to ensure the correct volume was programmed. Increase needle and loop flushing protocols to ensure no carryover from injection. Purging the injector metering pump. | | LC Gradient | - Insufficient time at strong solvent conditions during gradient program. Increase based on column dimensions. | ### **High Pressure** | Causes | Solutions | |---|--| | Flow rate set too
high | - Reduce flow rate setting. | | Blocked column | - Backflush column (if permitted) or replace column. | | Incompatible mobile phase (precipitated buffer or immiscible) | - Use correct mobile phase; wash column and re-equilibrate. | | Improper column | - Use correct column with correct dimensions and particle geometry. | | Injector blockage | Clear blockage (review needle, loop, valve assembly and HPV outlet). | | Guard column /
cartridge blockage | - Replace or remove guard column. | | Column in-line filter blockage | - Replace or remove in-line filter. | | Column temperature too low | - Set adequate column temperature. | | Sensor malfunction | - Repair or replace pressure sensor. | | Pump in-line filter
blockage | - Replace in-line filter. | | Blocked tubing | - Replace blocked tubing as necessary. | Excellence in Science